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Short introduction 
In Magnetic Particle Imaging (MPI), the system matrix refers to a mathematical model that relates the 
response of magnetic nanoparticles (MNPs) to the applied magnetic fields, which helps in reconstructing an 
image from the MPI measurements [5, 6]. 

Magnetic Particle Imaging (MPI) Overview: 

MPI is an imaging technique that uses superparamagnetic nanoparticles as tracers and exploits their nonlinear 
response to a time-varying magnetic field. The key advantage of MPI is its ability to directly image the magnetic 
particles with high sensitivity and resolution, without background signals from tissues or other materials. It is 
widely used in medical imaging, drug delivery tracking, and other biomedical applications. 

What is the System Matrix in MPI? 
In MPI, the system matrix is a critical component of the image reconstruction process. It encapsulates the 
relationship between the spatial distribution of the magnetic nanoparticles and the corresponding 
measured signal detected by the system. Specifically, the system matrix is a linear transformation that maps 
the spatial arrangement of the magnetic particles within the imaging field to the voltage signals recorded by the 
detection coils. 
Mathematically, this can be described as: 

𝒃 = 𝑨 ⋅ 𝒙 

Where: 
1. b is the vector of measured signals (the output of the MPI scanner). 
2. A is the system matrix, which represents the response of the nanoparticles at different spatial 

locations to the applied magnetic fields. 
3. x is the vector representing the unknown spatial distribution of the magnetic nanoparticles (the image 

to be reconstructed). 

Key Points about the System Matrix in MPI 
1. Calibration of the System Matrix: The system matrix is typically obtained through a calibration 

process. A known quantity of magnetic nanoparticles is scanned at different spatial positions within 
the field of view. The system records the response of the nanoparticles at each position, and these 
responses are stored in the system matrix. In essence, the system matrix is a comprehensive map that 
relates the magnetic particle distribution at various locations to the MPI signal. 

2. Size and Complexity: The system matrix in MPI can be very large because it must account for the 
system’s response at every spatial position (voxel) and across multiple signal channels (e.g., different 
frequency components of the received signal). For high-resolution images, this can lead to a system 
matrix with millions of elements, which poses challenges for data storage and computational 
efficiency. 

3. Image Reconstruction: Once the system matrix is calibrated, it is used to reconstruct images. The MPI 
measurement vector b is obtained during an imaging session, and the inverse problem of finding x (the 
spatial distribution of nanoparticles) from b is solved using the system matrix A. This typically involves 
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solving a large-scale linear system or using regularization techniques to handle noise and ill-posedness 
in the inversion process. 

4. Forward Model: In MPI, the system matrix embodies the forward model, meaning it predicts how a 
given distribution of magnetic nanoparticles would produce a measured signal. In practice, the system 
matrix can account for several physical effects, including: 

o The spatial sensitivity of the detection coils. 
o Nonlinear responses of magnetic nanoparticles. 
o The geometry of the applied magnetic field and its gradient. 

5. Alternatives to the System Matrix Approach: While the system matrix method is widely used, it is not 
the only approach to image reconstruction in MPI. Another common method is the X-space 
reconstruction technique [7], which relies on real-time processing of the MPI signal without the need 
for a pre-calibrated system matrix. X-space methods trade off some flexibility and accuracy for 
computational efficiency compared to system matrix-based reconstructions. 
There is a hybrid method called image-based system matrix approach [1-4], which combines both 
reconstruction methods by utilizing x-space input data for the system matrix instead of spectral 
information. The advantage is a more flexible reconstruction approach, which is independent from 
hardware influences. 

Challenges and Considerations 
• Calibration Time: Acquiring a system matrix can be time-consuming because it requires scanning a 

calibration object at many locations. 
• Memory and Computational Demand: Storing and manipulating large system matrices, especially for 

high-resolution imaging, requires significant computational resources. 
• Regularization: The inversion of the system matrix is typically ill-posed, meaning the reconstruction 

process can be sensitive to noise, so regularization techniques (like Tikhonov regularization) are often 
used to stabilize the image reconstruction. 

• Estimate Moore-Penrose inverse of the given matrix: another approach for solving the equation is to 
calculate the inverse of the given matrix. A singular value decomposition (SVD) is a prominent approach 
for that. 

Summary 
In Magnetic Particle Imaging (MPI), the system matrix is a critical tool for image reconstruction, representing 
the relationship between the distribution of magnetic nanoparticles and the signals measured by the system. It 
is obtained through calibration and used to solve the inverse problem of reconstructing images from the 
measured signals, enabling the visualization of nanoparticle distributions within the body or other 
environments. 

Understanding the concept of system matrix reconstruction 
The principal idea behind a system matrix reconstruction approach is to handle parameters, effects and 
influences from hardware, sequences and particle systems, which cannot be easily described by formalism. 
In short, a system matrix reconstruct approach is a black-box approach. For that, the particle system, which is 
used in upcoming measurements is placed as a small point-like sample at each position in space within the 
scanners’ field of view (FOV) (see Fig. 1). At each position (1..4), a full dataset is acquired with a specific 
transfer function for each position (spatial dependent point-spread function – sdPSF). These input data sets 
are stored in the system matrix as column vectors (Fig. 2). 
It has to be mentioned that as input information all possible parameters can be used. 
With the given system matrix, which is now unique for the used scanner, the sequence and the MNPs, arbitrary 
distributions of the MNP measured with the same sequence can be reconstructed. Two major reconstruction 
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processes are available: iterative regularization methods (e.g. Kaczmarz in combination with Tikhonov) or pre-
computed pseudo inverse (e.g. using SVD). 

 

Figure 1: Sketch of an example for a system matrix reconstruction: at each positions in the scanner a point-like 
sample is measured and their transfer-function is stored within a system matrix as column vectors. After 
inverting the matrix, arbitrary measurement data can be reconstructed. 

The system matrix approach overcomes all issues coming up with hardware distortions, MNP relaxation effects 
and other possible recurring effects during the imaging process. 
The disadvantage is the fact, that the acquired system matrix is only valid for this specific parameter space, 
which means by changing one parameter, the entire system matrix has to be acquired again. Since the process 
of acquisition can take a long time, especially when using 3D system matrices, this approach is quite 
unflexible. 

As mentioned above, the input information can be different. In fig. 2, raw-images (similar to convolved x-space 
images) are used as input information. The advantage by using the raw-image instead of direct k-space 
parameters is the fact, that raw-images are independent from the scanners’ hardware, because all distortions, 
e.g. coming from the amplifiers or receive chain, is corrected. The only influence is the particle relaxation itself, 
which can influence the PSF symmetry (it has to mentioned, that relaxation effects can partially be 
compensated by using exponential deconvolution kernels [9]). 
Since now the raw-image, which is the input information for the system matrix, is independent from the 
scanners’ hardware and partially independent from the particles hardware, these system matrices can be pre-
calculated by a simulation tool, which is able to emulate the scanners’ hardware [8]. This process is much 
faster and more flexible to adapt different parameters, especially from the sequence site. 
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Figure 2: Image-based system matrix approach: This hybrid reconstruction method raw-images used as input 
information for system matrices. For each position in space, a point-like sample is used. 

For 3D space, the acquisition for each voxel follows a defined trajectory, which is stored in the order of the 
columns within the system matrix (Fig. 3). 

 

Figure 3: For the storage of the system matrix input information, a given order has to be defined. 

The SVD algorithm 
The sketch in figure 1 shows the common way for solving a system matrix reconstruction or in other words 
solving the linear equation 𝐴𝑥 = 𝑏. 
To get there, one prominent approach is to calculate the inverse of the matrix 𝐴. 
The pseudo-inverse (or Moore-Penrose pseudo-inverse) is a generalization of the inverse for matrices that are 
not square or are singular. It is widely used in solving linear systems, especially in least-squares problems. 

Definition: 
For a matrix 𝐴, the pseudo-inverse 𝐴+ satisfies: 

1. 𝐴𝐴+𝐴 = 𝐴 
2. 𝐴+𝐴𝐴+ = 𝐴+ 
3. (𝐴𝐴+)𝑇 = 𝐴𝐴+  
4. (𝐴+𝐴)𝑇 = 𝐴+𝐴 

Applications: 
• Solving linear systems 𝐴𝑥 = 𝑏 when 𝐴 is not invertible. 

o Exact solution: 𝑥 = 𝐴+𝑏, if one exists. 
o Least-squares solution: Finds 𝑥 that minimizes ‖𝐴𝑥 − 𝑏‖. 

• In machine learning and statistics for linear regression. 
• Dimensionality reduction, e.g., Principal Component Analysis (PCA). 

One method to compute 𝐴+ is the SVD (Singular Value Decomposition) method, the most robust and common 
method: 

𝐴 = 𝑈Σ𝑉𝑇 , 
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where 𝑈 and 𝑉 are orthogonal, and Σ is a diagonal matrix of singular values. 
The pseudo-inverse is computed as: 

𝐴+ = 𝑉Σ+𝑈𝑇 , 

where Σ+ is the pseudo-inverse of Σ, obtained by taking the reciprocal of non-zero singular values and 
transposing. 
There are other methods like Normal Equation (for over-determined systems), Gram-Schmidt or QR 
Decomposition (for under-determined systems) and iterative methods. The latter approach is useful for large, 
sparse matrices and can approximate the pseudo-inverse without direct computing. Algorithms are gradient 
descent algorithm or Kaczmarz method. 

Pseudocode: 

// *************************************************************************** 

// desc.: perform a SVD and calc the inverse matrix. 

// finally perform a vector multiplication 

// input: systemmatrix A --> SVD(W,U,VT) 

//        s --> signal-vector 

//        lambda --> regularization value 

//        trunc_k --> truncation 

// out:   1D vector consisting the reconstructed information 

// *************************************************************************** 

function Calc_InvMatrix_MulVector ( A: TReal2DArray; s: TReal1DArray; lambda: 

Real = -1; trunc_k: Integer = -1 ): TReal1DArray; 

var 

  Wl, W: TReal1DArray; 

  U, VT, inv_a: TReal2DArray; 

  m, n, i, j, k: Integer; 

begin 

  m := Length ( _A ); 

  n := Length ( _A [ 0 ] ); 

 

  // test 

  if Length ( _s ) <> m then exit; 

 

  // calculate the single value decomposition of the matrix 

  RMatrixSVD ( _A, m, n, 2, 2, 2, W, U, VT ); //e.g. ALGLib or LAPACK/BLAS 

 

  SetLength ( inv_a, n, m ); 

  SetLength ( result, n ); 

  for i := 0 to n - 1 do begin 

    result [ i ] := 0; 

    for j := 0 to m - 1 do begin 

      for k := 0 to n - 1 do 

        if W [ k ] <> 0 then 

          inv_a [ i,j ] := inv_a [ i,j ] + VT [ k,i ] * U [ j,k ] / W [ k ]; 

 

      result [ i ] := result [ i ] + inv_a [ i,j ] * _s [ j ]; 

    end; 

  end; 

 

  // free memory 

  W := nil; 

  Wl := nil; 

  U := nil; 

  VT := nil; 

  inv_a := nil; 

end; // <- Calc_InvMatrix_MulVector 
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Usage of the SVD algorithm in Octoview 
TODO 

 

The Kaczmarz algorithm 
An iterative algorithm for solving large, sparse linear systems 𝐴𝑥 = 𝑏. It works by successively projecting the 
solution estimate onto the hyperplanes defined by the rows of 𝐴. Each step adjusts the solution to better 
satisfy one equation of the system. The method is efficient for large and sparse systems and finds applications 
in image reconstruction and tomography. 

Sparsity Constraints (L1 regularization) 
Assumes that the tracer distribution is sparse (i.e., only a few locations contain the tracer particles). L1 
regularization promotes sparsity, helping isolate specific areas of interest and reduce noise in the 
reconstructed image. 

Tikhonov Regularization (L2 regularization): 
A technique to stabilize the solution of ill-posed or noisy problems, especially when 𝐴 is poorly conditioned or 
singular. It modifies the objective by adding a regularization term to the least-squares problem: 

‖𝐴𝑥 − 𝑏‖2 + 𝜆‖𝑥‖2 

where 𝜆 controls the balance between fitting the data and smoothness of the solution. 
It is also known as ridge regularization, which minimizes the sum of squared differences between the 
observed signal and the reconstructed image, while also penalizing large values in the solution. It smooths the 
reconstruction and helps reduce the impact of noise, though it may blur boundaries. 

Relationship: 
• The Kaczmarz method may struggle with ill-posed systems where solutions are unstable or undefined. 
• Tikhonov regularization (L2 regularization) can be incorporated into iterative methods like Kaczmarz to 

stabilize the process and ensure convergence to a meaningful solution. 
• Iterative approaches to solve Tikhonov-regularized systems can be based on modified Kaczmarz 

iterations, making them computationally efficient for large-scale problems. 

In summary, the Kaczmarz method efficiently handles linear systems iteratively, while Tikhonov regularization 
ensures stability and robustness in challenging cases. They complement each other when applied together. 

Usage of the Kaczmarz algorithm in OctoView 
The Kaczmarz algorithm used in OctoView is an optimized iterative solver for linear systems with following 
parameters (fig. 4): 

• iterations Defines the number of passes the algorithm is used for one reconstruction. Useful  
values are between 5 and 100. A high value causes a high calculation time. 

• lambda Tikhonov regularization parameter. Useful values are between 1 and 1e-5.  
The higher the value the higher the filtering effect (less higher system functions are used 
for reconstruction) 

• threshold System matrices can be ordered by the energy of their system functions  
This default setting if given by model-based system matrix generation in MFS5. Useful 
values are 25%-50% of the number of system functions given in the system matrix. A 
reduced number causes higher efficiency and short calculation times. 
HINT: when using non-sorted system matrices, this value has to be set to -1 to ensure 
that all relevant system functions are used. 

• softTH  This parameter sets a soft threshold: Below this value all intermediate  
results are set to zero. This helps isolate specific areas of interest and reduce noise. 

• force real Avoid negative values for all intermediate results during the  
reconstruction process. 
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Figure 4: Parameter overview for Kaczmarz algorithm. 

The non-negative least squares (NNLS) algorithm 
The Fast Non-Negative Least Squares (FNNLS) algorithm solves the linear system Ax = b under the constraint 
that all components of the solution x are non-negative (x > 0). It minimizes the least-squares error min ||Ax - 
b||^2. The algorithm uses an active set approach, iteratively updating a set of active variables P to find the 
optimal solution returned as vector d [11]. 

Iteration Mechanics 
Main Loop 

• Gradient Check: Computes w = ATb - ATAd. Identifies the largest w[i] for i ∉ P ). If w[i] ≤ Tol, the 
algorithm terminates. 

• Add Variable: Adds the index with the largest w[i] to P. 

• Solve Least Squares: Solves min ||A - b||2 for active variables in P, setting s[i] = 0 for i ∉ P. 

• Inner Loop (Non-Negativity): Ensures s[i] ≥ 0 for i ∈ P: 

o If s[i] ≤ Tol, computes step size a = min d[i]/(d[i] - s[i]), updates d = d + a(s - d), and removes 
variables with d[i] ≈ 0 from P. 

o Re-solves the least-squares problem for updated P. 

• Update: Sets d[i] = max(0, s[i]), updates w, and checks if P changed. If unchanged for multiple 
iterations (no_update limit) or MaxIter is reached, the algorithm stops. 

Image Reconstruction Context 
In image reconstruction, x represents pixel intensities n = width × height. High iteration counts occur because: 

• Large n: Each pixel is a variable, potentially requiring an iteration to add to P. 

• Dense Solutions: Images with many non-zero pixels increase the size of P, needing more iterations. 

• Matrix A: Complex or ill-conditioned matrices slow convergence. 

• Small Tolerance (Tol): Strict Tol values demand more iterations for precision. 

To reduce iterations: 

• Use a better initial P (PInitial), e.g., from a coarse reconstruction. 

• Increase Tol for faster convergence (balance with image quality). 

• Exploit image sparsity or optimize A for efficiency. 
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Usage of the FNNLS algorithm in OctoView 
The implementation requires for the first use a pre-calculation of the correlation matrix AAT, which can take a 
while. This step has to be repeated for each change of the input system matrix. 

• iterations Defines the number of passes the algorithm is used for one reconstruction. Useful  
values are between 5 and 100. A high value causes a high calculation time. 

• lambda (Tol) Numerical tolerance for convergence check. Useful start value is 1e-8. Increasing this 
value causes an increased speed of convergence. 

• threshold System matrices can be ordered by the energy of their system functions  
This default setting if given by model-based system matrix generation in MFS5. Useful 
values are 25%-50% of the number of system functions given in the system matrix. A 
reduced number causes higher efficiency and short calculation times. 
HINT: when using non-sorted system matrices, this value has to be set to -1 to ensure 
that all relevant system functions are used. 

Summary 
To conclude: a system matrix stores the spatial dependent transfer-function of a point-like sample (sdPSF) for 
a given FOV. The recipe, which defines what kind of input information, what order in the system matrix is 
provided, and what position in space is used, has to be stored as well. 
These recipes for different system matrix reconstruction approaches are defined in the following section. 

Different system matrices in MFS and OctoView 
The MFS software provides several different templates for the generation of system matrices: 

Fourier-based 
• GWSM: Fourier-based system matrix for Gleich-Weizenecker systems following their provided settings 

[6]. 
Input: <mx> <my> <ND> <df> 

• TWSM: Fourier-based system matrix especially for TWMPI systems following a specific peak-picking 
process [1]. 

Input: <m1> <m2> <df> <f1> <f2> <mode> <mode2> 
• FTSM: Fourier-based system matrix collecting N pairs of real and imaginary parts from a given Fourier-

transformed dataset from the given frequency kfrom up to kto. 
Input: <kfrom> <kto> 

• FT1F: Fourier-based system matrix collecting real and imaginary parts from a given Fourier-transformed 
dataset for a given frequency f1 and within a given range kfrom…kto.  

Input: <kfrom> <kto> <f1> <type> 
 

Parameter type is defined as: 
▪ type=0: collecting even harmonics: 2*i*f1 ∈ { kfrom… kto} 
▪ type=1: collecting odd harmonics: (2*i-1)*f1 ∈ { kfrom… kto} 
▪ type=2: collecting all harmonics within the range { kfrom… kto} 

• ARSM: The ARSM recipe is a more flexible (ARbitrary) scheme than the FTSM or FT1F scheme. It uses a 
pre-calculated look-up table (LuT), called peaklist, consisting of frequency indices (k-index) collecting 
the real and imaginary parts from the Fourier transformed spectrum. This peak-list is stored along the 
system matrix. Furthermore, the peak-list can also be pre-ordered by the system functions’ energy 
(ordering feature). 
Attention: by changing the order, the order of the 3D information has to be adjusted too. 

Input: <peaklist> 
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 To calculate the peak-list in MFS, a specific scheme is used (calc_ARSM_data): 

  <sizeX> <sizeY> <sizeZ> 

<formula> 

<varXfrom> <varXfo> <varYfrom> <varYto> <varZfrom> <varZto> 

(<derivative>) 

The sizeX, sizeY, sizeZ parameters define the amount of input voxels, the formula defines the process 
the frequency information is collected, the <var> parameters can be seen as running variables. The 
derivative parameter is optional and defines the number of derivations before starting the peak-picking 
process. 

Example for a TWMPI-FFL-type0: "ellipsoid 11 11 19 3 3 3 15 15 1000" and frequencies 12150Hz, 
1150Hz, 150Hz with df=50Hz: 

89 19 1 243*(2*x-1)+23*2*y+3*2*z;243*2*x+23*(2*y-1)+3*(2*z-1) 1 15 -5 5 -5 5 

Signal-based 
• ASM2: This system matrix scheme is a specific scheme to extract information from time signal data 

sets with a sliding window method. 
 

Input: <sizeX> <sizeY> <delay> <pdl> <dx> <k_from> <k_to> (<derivation>) 
Example for a TWMPI-FFL-type0: "ellipsoid 11 11 19 3 3 3 15 15 1000" and frequencies 12150Hz, 
1150Hz, 150Hz with df=50Hz: 

89 19 1 243*(2*x-1)+23*2*y+3*2*z;243*2*x+23*(2*y-1)+3*(2*z-1) 1 15 -5 5 -5 5 

 

Image-based 
• TWI1/TWI2/TWI3: The image-base system matrix schemes are divided into 3 different approaches [1]: 

o TWI1: After raw-image generation, the image is cropped and scaled down before stored as 
column vector in the system matrix. 

o TWI2: After raw-image generation, the image is 2D Fourier transformed. A defined inner area 
(low frequencies) of the complex image is used a input information. 

o TWI3: Same as TWI2 but instead of taking the complex information, the cropped complex image 
is Fourier transformed again (inverse FT) and the resulting image is used as input information. 

This approach can be quite powerful but requires lots of parameters since also the entire raw-image 
generation process has to be defined. The input information for the system matrix generation is similar 
for all TWIx schemes: 

 Input:  <imgX> <imgY> <sx> <sy> <crop> <x1> <y1> <x2> <y2> <mode> … 

<rawIMGx> <rawIMGy> <f1> <f2> <dx> <dy> <from> <to> … 

<fillX> <fY> <foldX> <fy> <sgn1> <sgn2> <sgn3> <sgn4> ... 

(<derivation>) … 

(<formula(;)> <x_min> <x_max> <y_min> <y_max> <z_min> <z_max>) … 

(<k3rem>) 

Example 1: for a TWMPI-FFL-type0(3D): "ELLIPSOID 13 13 19 3 3 3 20 20 1000" 
with frequencies 50Hz & 8650Hz and derivation=2 
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19 137 100 200 0 0 0 0 0 0 200 400 50 8650 0,25 0,25 5 49995 1 0 0 0 1 -1 1 -1 2 

 

Example 2: for a iMPI-type6 (2D): "CUBOID 35 1 75 4 4 4" 

with cropping: 

75 35 60 80 1 19 0 138 159 0 320 320 60 2420 0,25 0,25 10 124990 1 0 1 1 1 -1 1 -1 2 

without cropping: 

75 35 80 80 0 0 0 0 0 0 320 320 60 2420 0,25 0,25 10 124990 1 0 1 1 1 -1 1 -1 2 

 

System matrix sub-structure 
All data required for a system matrix reconstruction scheme is stored in a sub-folder with a unique naming. 

HINT: Do not store multiple system matrices within the same sub-folder. 

  - sub-folder <SM>\ 

   - <SMname>.txt  → system matrix info 

   - <SMname>.sm   → system matrix values 

- <SMname>.3dt  → 3D mapping info 

 

// for ARMS, the peaklist table file is required: 

   - <SMname>.int  → system value ordering 

   - <SMname>_order.int → orig. system value ordering 

 

The data types for the generated files are defined as follow: 

System matrix files (*.sm; *.3dt; *.int) 
For managing the system matrix data, different types are used: 

o Info-file (*.txt) – ASCII format 
o System matrix values (*.sm) – Binary file 

header=2×Integer(4Byte)  data=M×N×double(8Byte) 
o 3D mapping file (*.3dt) – Binary file 

header=Integer(4Byte) data=M×3×double(8Byte) 
o Index file (*.int) – Binary file, no header N×integer(4Byte) 

For more information: see the document: datatype.pdf 

Generating system matrices 
There are multiple ways to create system matrices: 

• Model-based: Use a simulation framework to generate simulated system matrices within a virtual 
scanner. For a given discrete pattern, at each point in space a data set is generated using point-like 
sample and further processed depending on the desired system matrix (SM types). 

• Measurement-based: At each point within a real scanner, a point-like sample is placed and measured. 

Both ways are using the same processing steps to create a final system matrix as described: 

1. Position a point-like sample at each point in space with coords (x,y,z) 
2. Perform a simulation (model-based) or measurement (measurement-based) at each point 
3. Prepare the data set depending on the desired system matrix to get the required encoding information 

and put them as column into the system matrix (*.sm) 
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4. Store the coords in the *.3dt file in the correct order 
5. Optional: store the peak-list data (*.int) (order of the encoding information, e.g., in k-space (ARSM)) 

Example 1: rapid generation using MFS 
The first approach for system matrix generation is to use the internal template structure of the MFS framework. 
For that, load the example project “2024_TWMPI_20mm” from the folder “2024_TWMPI_sm_gen1”. This 
project loads a TWMPI scanner with pre-defined settings (f1=50 Hz; f2=650 Hz; f3=9,450 Hz) with a sequence 
type6. 

1. Go to the “MNP” tab and enable MNP0 and disable MNP1 (set checkbox used). Select MNP0. 

 

Figure 5: Screenshot from MFS5. 

2. Go to the “Cond” tab and select the desired receive coil, here index 7. 

 

Figure 6: Screenshot from MFS5. 

3. Open the system matrix calculation window by pressing the button “calc SF/SM”. 

 

Figure 7: Screenshot from MFS5. 

4. Set up the settings for the system matrix, here type ARSM. 

The settings for this system matrix type is set with one line consisting of multiple parameters (#=10) 
defining the peak-picking process. To get the correct size of the three first parameters defining the 
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numbers of points/voxels, a “get SM settings” button can provide a correct number when selected the 
correct MNP. 

With the “accept” button, a system matrix with all required data is calculated and stored within the 
project-folder defined with “subdirectory”. 

 

Figure 8: Screenshot from MFS5. 

 

Example 2: point-by-point generation using MFS scripting language 
Another approach for calculating a system matrix is the use of a script for the MFS framework. For that, load the 
example project “2024_TWMPI_20mm” from the folder “2024_TWMPI_sm_gen1”. This project loads a TWMPI 
scanner with pre-defined settings (f1=50 Hz; f2=650 Hz; f3=9,450 Hz) with a sequence type6. 

Go to the “Script” tab and select “script2”: this script allows to run point-by-point through a defined MNP 
structure defining the points in space for system matrix (param mnpSM 0). 
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Figure 9: Screenshot from MFS5. 

The second MNP structure is defined as a single point and represents the point-like sample (param mnpPP 
1). 

Additional parameters can be defined for the desired matrix structure: size, formula, variables, etc. 

Pressing the “go” button starts the script and visualize the point-by-point calculation of the system matrix. 
In the subfolder of the project, two additional folders are created: 

 SM_TEST1: consisting of the result of the point-by-point system matrix calculation 

SM_TEST2: consisting of the a list of data sets (DATA00000.dbl, …) for each point in space. Furthermore, 
a textfile (coords.txt) provides the coords for each point. 

HINT: the data in SM_TEST2 are required for example 3. 

Example 3: data set based generation using MFS scripting language 
The third approach for generating a system matrix is the use of single data sets. These data sets can be 
generated by a simulation framework, e.g., the MFS software or directly measured with a real MPI scanner. 

For the demonstration, a script has been implemented to show the workflow. For that, load the example project 
“2024_TWMPI_20mm” from the folder “2024_TWMPI_sm_gen1”. This project loads a TWMPI scanner with 
pre-defined settings (f1=50 Hz; f2=650 Hz; f3=9,450 Hz) with a sequence type6. 

HINT: Please run the script: “2024_10_PPSM.mf5s” in script2 prior before running the script 
“2024_10_SM_gen1.mf5s” in script3. 

The script “2024_10_SM_gen1.mf5s” uses external datasets with a specific naming “data00000.dbl; 
data00001.dbl; …” and a textfile “coords.txt” consisting of the coordinates for each data set with the 
format: 

X1 Y1 Z1 

X2 Y2 Z2 

… 

By pressing the “go” button, the script runs through the data and generates the system matrix as defined. The 
result is provided in the subfolder “SM_test2\SM\”. 

 

Using self-generated system matrix 
When generating a system matrix via example 3, the input data can come from a different source, e.g., a point-
by-point acquisition with a point-like sample at different positions in the scanner. 

In that case, the reconstruction parameters for using such a system matrix have to be checked and adjusted 
carefully depending on the processing of the data sets. 
For example, a robot is used to position the point-like sample at multiple points inside the scanner. For each 
point, the sample data set as well as a baseline data set is acquired. 
The upper script has to be adjusted to perform an additional subtraction of signal and baseline-signal data set 
(baseline correction). 
You can do that by adding these lines for selecting the right data: 

 
  loop l1 0 &data_dir_count/2-1 

    param c1 2*&l1counter 

    param c2 &c1+1 
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    // baseline correction 

    combine_data %data_dir&&c1 %data_dir&&c2 %data sub 

 

    // processing 

    FFT_data %data 

    prepare_arsm_data %data %dataout %peaklist 

 

At the end, the data sets, which are used for the SM generation, does not had any other post-processing such 
as RCC, global phase correction, derivatives, or thresholding. 
That means, that for the reconstruction process, these parameters have to be set to default values (if not 
defined otherwise): 

• Do not use RCC and no derivations 
• Set global phase to zero 
• Set threshold to -1 (to use all system functions for reconstruction) 

 

 

Figure 10: Screenshots from Octoview: showing the parameters which have to be set for correct reconstruction 
using a measured system matrix. 

HINT: A good validation method to check the consistency of the system matrix is to use the same signal data 
sets for reconstruction. 

 

Combining multiple system matrices 
System matrices can be seen as structures, which maps the magnetic response of a point-like specific MNP 
system to their spatial location. For each parameter set as well as different MNP system a unique system 
matrix can be built. 

Thus, it is possible to combine multiple system matrices, e.g., to encode within the same experiment different 
types of particle types. This method is also known as multi-color MPI [10]. 

There are multiple possible issues coming up when using multiple system matrices for the reconstruction 
process: 

• The limitation of the amount of usable encoding information from the Fourier spectrum or image-based 
information: From a typical 3D spectrum for a single receive coil, approximately 3,000 components 
(frequencies) can be extracted. When encoding a volume with 1,000 or 2,000 voxels and for different 
MNP systems, the system is dramatically underdetermined. 
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• When stringing together multiple system matrices from different sources, a normalization of the system 
matrices could be mandatory. 

Reasons for normalization 
If you are combining two system matrices, normalization is often beneficial to ensure consistency and 
numerical stability. Here are some reasons and methods for normalization: 

1. Consistent Scaling: If the two matrices have different value ranges, this could make the reconstruction 
algorithm unstable or give undue weight to one of the matrices. 

2. Numerical Stability: Large differences in the value scales of the matrices can cause numerical 
instabilities, especially in iterative reconstruction methods. 

3. Improved Comparability and Weighting: If the matrices represent different physical properties (e.g., 
different measurement ranges or frequency bands), normalization helps make them comparable. 

Methods for normalization 
Here are some common approaches to normalize system matrices: 

1. Max normalization: Scale each matrix so that its maximum value is 1. 

𝐴𝑛𝑜𝑟𝑚 =
𝐴

𝑚𝑎𝑥(|𝐴|)
 

and 

𝐵𝑛𝑜𝑟𝑚 =
𝐵

𝑚𝑎𝑥(|𝐵|)
 

This scales each matrix independently to the same range. 

2. Row or Column normalization: Normalize each row or column so that values within a row or column 
are brought to the same range. This is useful if rows (or columns) are intended to contribute differently 
to the reconstruction. 

3. Standardization (Z-score normalization): Subtract the mean and divide by the standard deviation of 
each matrix. 

𝐴𝑛𝑜𝑟𝑚 =
𝐴 −𝑚𝑒𝑎𝑛(𝐴)

𝑠𝑡𝑑(𝐴)
 

and 

𝐵𝑛𝑜𝑟𝑚 =
𝐵 −𝑚𝑒𝑎𝑛(𝐵)

𝑠𝑡𝑑(𝐵)
 

This centers and scales the distribution of values, which is especially helpful with high variability in 
data. 

4. Energy-Based normalization: Calculate the energy of each matrix (e.g., the sum of the squares of all 
elements) and scale the matrices so that they have the same total energy. 

5. Weighted combination: If one of the matrices is more important, you can multiply that matrix by a 
weight w: 

𝐴𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑 = 𝑤 ⋅ 𝐴 + 𝐵 

This ensures that the two matrices contribute differently to the reconstruction. 
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When normalization is necessary 
• Different sources: When the matrices come from different measurement sources or represent 

different physical units. 

• Large differences in scale: When one matrix has a value range that strongly deviates from the other. 

• Different application domains: In applications where the two matrices represent different frequencies 
or signal strengths. 

Applying appropriate normalization before combining the system matrices ensures that neither matrix 
dominates the other and that the combination supports the desired reconstruction quality. 

 

Combining two system matrices 
After the generation of a system matrix, there are several files available in the system matrix folder. 

ATTENTION: It has to be mentioned, that for combination of system matrices, the ordering feature of system 
matrices, which is required for threshold Kaczmarz reconstruction, has to be disabled. 

<SMname>.txt text-file: consists of system matrix information 

   Here the important values are: 

   imgx, imgy define the size of the 2D projection space 

(in the case of 2D system matrices this size represents the size of 
the final reconstructed image) 

   SMm, SMn define the matrix size with 

     SMn number of pixels/voxels 

SMm number of encoding parameters 

<SMname>.3dt consists of the 3D coords for the voxels in space 

(#=SMn × 3 [Double]) 

<SMname>.int ONLY required for ARSM-types: consists of the LuT for collecting the encoding 
information (#=SMn / 2 [Int] …because of using real and imaginary part as 
parameters). 

<SMname>.sm consists of the system matrix values (SMm × SMn [Double]) 

Step 1: extending the values imgy and SMn (imgx and SMm remain constant). 

HINT: The extension of imgy causes a nice visualization of 2D system matrices without interleave artifacts but 
requires a consistency check for 3D matrices because of the 2D projection. 

 The new values are  𝑖𝑚𝑔𝑦
′ = 𝑖𝑚𝑔𝑦

(1)
+ 𝑖𝑚𝑔𝑦

(2) 

𝑆𝑀𝑛
′ = 𝑆𝑀𝑛

(1)
+ 𝑆𝑀𝑛

(2) 

 Consistence check: the product of imgx and imgy must the equal to SMn: 
𝑆𝑀𝑛 = 𝑖𝑚𝑔𝑥 + 𝑖𝑚𝑔𝑦  

Step 2: adjusting the number of 3D coords 
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For correct data processing and visualization, the 3D cords have to be adjusted too. Here it is important 
to use spatially separated areas for each of the system matrix, e.g., simply place the coordinates next to 
the first area. 

Example: MFS-script system matrix combination 
The MFS software provides the script command combine_sm_data, which allows the combination of two 
system matrices via the technique presented before. 

After running the examples 1-3, the example folder should consist of the sub-folders SM_test0, SM_test1, 
SM_test2. By executing the script “2024_11_combine_SM”, a new sub-folder “SM_test3” with a combined 
system matrix is calculated. 

When using this system matrix, someone would expect that both show the same reconstruction result since 
both system matrices have been built with the same data. But the example 1 uses a specific ordering feature: 
the default setting in the MFS software is a descending ordering of the eigenvectors (energy). This ordering 
feature can be set directly in the system matrix calculation window or via the script command:
 GLOBAL_PEAKLISTORDERING 1 

Example 2 and 3 did not use a specific ordering. 
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